Some ergodic properties on eventually continuous Markov-Feller Semigroups

Yong Liu
Peking University, liuyong@math.pku.edu.cn
Joint with Fuzhou Gong (AMSS), Yuan Liu (AMSS), Ziyu Liu (PKU)

The 18th Workshop on Markov Processes and Related Topics, July 30-August 2, 2023 Tianjin University

OUTLINE

- 1 Background
 - Ergodicity for Dynamical System
 - Ergodicity for Markov Processes
 - EMDS and regularity of Markov semigroup
 - Equicontinuity and Lower bound technique
- 2 Ergodicity for eventually equicontinuous Markov-Feller semigroup
 - Eventually equicontinuous Markov-Feller semigroup
 - Ergodicity for Eventually continuous semigroup
 - Asymptotic stability
 - Relation with the e-property
- 3 Applications
 - Place-dependent iterated function systems
 - Asymptotic stability of SPDEs

OUTLINE

- 1 Background
 - Ergodicity for Dynamical System
 - Ergodicity for Markov Processes
 - EMDS and regularity of Markov semigroup
 - Equicontinuity and Lower bound technique
- 2 Ergodicity for eventually equicontinuous Markov-Feller semigroup
 - Eventually equicontinuous Markov-Feller semigroup
 - Ergodicity for Eventually continuous semigroup
 - Asymptotic stability
 - Relation with the e-property
- 3 APPLICATIONS
 - Place-dependent iterated function systems
 - Asymptotic stability of SPDEs

ERGODICITY FOR DYNAMICAL SYSTEM

- 1870s, Boltzman's ergodic hypothesis in statistical mechanics
- 1931, Birkhoff, pointwise ergodic theory
- 1932, von Neumann, mean ergodic theory

ERGODICITY FOR DYNAMICAL SYSTEM

- $(\Omega, \mathcal{F}, \mathbb{P})$, probability space
- $T: \Omega \to \Omega$, measurable transformation preserving $\mathbb P$

$$\forall A \in \mathcal{F}, \ \mathbb{P}(T^{-1}A) = \mathbb{P}(A).$$

• B: invariant set of T, $\mathbb{P}(B\triangle T^{-1}B)=0$,

$$\mathscr{S} := \{B : B \text{ is invariant set}\}$$

• \mathbb{P} is ergodic w.r.t. T. (or T is ergodic w.r.t. \mathbb{P}):

$$\forall B \in \mathscr{S}, \mathbb{P}(B) = 0 \text{ or } 1.$$

THEOREM (BIRKHOFF'S INDIVIDUAL ERGODIC THEOREM)

 $(\Omega, \mathcal{F}, \mathbb{P})$, T preserving \mathbb{P} , $f \in L^1(\Omega, \mathcal{F}, \mathbb{P})$,

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=0}^{N-1}f(T^n\omega)=\mathbb{E}[f(\omega)|\mathscr{S}], \ \textit{a.s.}\mathbb{P}.$$

Moreover, if P is ergodic w.r.t. T,

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=0}^{N-1}f(T^n\omega)=\mathbb{E}(f(\omega)),\ \textit{a.s.}\mathbb{P}.$$

THEOREM (ERGODIC DECOMPOSITION)

 Ω : Polish space ...

ERGODICITY FOR MARKOV PROCESSES

- (\mathcal{X}, ρ) : Polish space
- ullet $\mathcal{M}_1(\mathcal{X})$: probability measures on \mathcal{X}
- \bullet $I=\mathbb{N}$, or $I=\mathbb{R}_+$
- ullet $\{P_t\}_{t\in I}$: Markov-Feller semigroup on ${\mathcal X}$

DEFINITION

A probability measure $\mu \in \mathcal{M}_1(\mathcal{X})$ is invariant for $\{P_t\}_{t \in I}$, if

$$P_t\mu = \mu$$

for all $t \in I$.

ERGODICITY FOR MARKOV PROCESSES

- $(\mathcal{X}^{\prime}, \mathcal{B}(\mathcal{X}^{\prime}))$ or path space
- shift operator on \mathcal{X}^I , $(\theta_t x)(s) = x(t+s)$, for $t, s \in I$
- \bullet \mathbb{P}_{μ} :

$$\int_{\mathcal{X}^n} f(x) \mathbb{P}_{\mu}^{t_1, \dots, t_n}(dx)$$

$$= \int_{\mathcal{X}} \dots \int_{\mathcal{X}} f(x_1, \dots, x_n) P_{t_n - t_{n-1}}(x_{n-1}, x_n) \dots P_{t_2 - t_1}(x_1, x_2) P_{t_1} \mu(x_1)$$

THEOREM

- (1) If invariant measure μ for $\{P_t\}_{t\in I}$, then the flow $\{\theta_t\}_{t\in T}$ preserves the measure \mathbb{P}_{μ} .
- (2) $(\mathcal{X}^{l}, \mathcal{B}(\mathcal{X}^{l}), \mathbb{P}_{\mu}, \{\theta_{t}\}_{t \in I})$ defines a dynamical system.

DEFINITION

An invariant measure $\mu \in \mathcal{M}_1(\mathcal{X})$ of a Markov semigroup $\{P_t\}_{t \in \mathcal{T}}$ is ergodic if the dynamical system $(\mathcal{X}^{\mathcal{T}}, \mathcal{F}, \mathbb{P}_{\mu}, \{\theta_t\}_{t \in \mathcal{T}})$ is ergodic.

THEOREM (ERGODIC DECOMPOSITION)

The set \mathcal{P}_{Inv} of all invariant probability measures for a Markov semigroup $\{P_t\}_{t\in T}$ is convex and $\mu\in\mathcal{P}_{Inv}$ is ergodic if and only if it is an extremal of \mathcal{P}_{Inv} . Furthermore, any two ergodic invariant probability measures are either identical or mutually singular.

ERGODICITY FOR MARKOV PROCESSES

- Existence of invariant measure
- Ergodic decomposition
- Uniqueness, Unique ergodicity
- Convergence to (unique) ergodic measure
- o ...

Properties of Markov-Feller semigroup $\{P_t\}_{t \in T}$???

DEFINITION

A Markov semigroup $\{P_t\}_{t\in T}$ satisfies the EMDS (Ergodic Measures are Disjointly Supported) property, if any two distinct ergodic measures $\mu, \nu \in \mathcal{M}_1(\mathcal{X})$,

 $\operatorname{supp}\,\mu\cap\operatorname{supp}\,\nu=\emptyset.$

Distinguish two probability measure by some test function class ${\cal A}$

$$|\langle \mathbf{f}, \mu \rangle - \langle \mathbf{f}, \nu \rangle| > 0, \ \mathbf{f} \in \mathcal{A},$$

 \mathcal{A} separates the points in \mathcal{X} .

$$|P_t f(x) - P_t f(y)| \rightarrow ?$$
, as $t \rightarrow \infty$.

•
$$Q_t(x,\cdot) = \frac{1}{t} \int_0^t P_s(x,\cdot) ds$$
: Cesáro averages of $\{P_t\}$,

$$|Q_t f(x) - Q_t f(y)| \rightarrow ?$$
, as $t \rightarrow \infty$.

EMDS AND REGULARITY OF MARKOV SEMIGROUP

Distinguish two probability measure by some test function class ${\mathcal A}$

$$|\langle \mathbf{f}, \mu \rangle - \langle \mathbf{f}, \nu \rangle| > 0, \ \mathbf{f} \in \mathcal{A},$$

 \mathcal{A} separates the points in \mathcal{X} .

0

$$|P_t f(x) - P_t f(y)| \rightarrow ?$$
, as $t \rightarrow \infty$.

•
$$Q_t(x,\cdot) = \frac{1}{t} \int_0^t P_s(x,\cdot) ds$$
: Cesáro averages of $\{P_t\}$

$$Q_t f(x) - Q_t f(y) | \rightarrow ?$$
, as $t \rightarrow \infty$.

Distinguish two probability measure by some test function class ${\cal A}$

$$|\langle f, \mu \rangle - \langle f, \nu \rangle| > 0, \ f \in \mathcal{A},$$

 \mathcal{A} separates the points in \mathcal{X} .

0

$$|P_t f(x) - P_t f(y)| \rightarrow ?$$
, as $t \rightarrow \infty$.

• $Q_t(x,\cdot)=rac{1}{t}\int_0^t P_s(x,\cdot)\mathrm{d}s$: Cesáro averages of $\{P_t\}$,

$$|Q_t f(x) - Q_t f(y)| \rightarrow ?$$
, as $t \rightarrow \infty$.

THEOREM (Zaharopol 2005 1)

Set (\mathcal{X}, ρ) : locally compact separable metric space. If the Markov-Feller semigroup $\{P_n\}$ is $C_0(X)$ -equicontinuous, then (P_n) has the EMDS property.

Theorem (Zaharopol 2005^1)

Assume that the Markov-Feller pair $\{P_n\}$ is $C_0(X)$ -equicontinuous and has invariant probability. If $\overline{\mathcal{O}(x)} \cap \overline{\mathcal{O}(y)} \neq \emptyset$ for every $x \in \mathcal{X}$ and $y \in X$, then (P_n) is uniquely ergodic, where $\overline{\mathcal{O}(x)} = \overline{\bigcup_{n=0}^{\infty}} \operatorname{supp}(P_n \delta_x)$.

Springer

¹Invariant probabilities of Markov-Feller operators and their supports.

- Existence of invariant measure
- Ergodic decomposition
- Uniqueness, Unique ergodicity
- Convergence to (unique) ergodic measure
- o ...

Properties of Markov-Feller semigroup $\{P_t\}_{t \in T}$???

REGULARITY OF MARKOV SEMIGROUP

- Feller property;
- Strong Feller property;
- Asymptotic Strong Feller property;
- Equicontinuous, (e-)property
- Eventually continuous property

EMDS AND REGULARITY OF MARKOV SEMIGROUP

- Existence of invariant measure
- Ergodic decomposition
- Uniqueness, Unique ergodicity
- Convergence to (unique) ergodic measure
- o ...

Properties of Markov-Feller semigroup $\{P_t\}_{t \in T}$???

REGULARITY OF MARKOV SEMIGROUP

- Feller property;
- Strong Feller property;
- Asymptotic Strong Feller property;
- Equicontinuous, (e-)property
- Eventually continuous property

• Existence:

THEOREM (KRYLOV-BOGOLIUBOV THEOREM)

Assume $\{P_t\}$ is Feller and $Q_t\nu:=t^{-1}\int_0^t P_s\nu ds$ is tight for some $\nu\in\mathcal{P}(\mathcal{X})$:

$$(\forall \epsilon > 0)(\exists \ \textit{compact set} \ \textit{K})(\forall t \geq 0)(\textit{Q}_t\nu(\textit{K}) \geq 1 - \epsilon).$$

Then $\{P_t\}$ admits an invariant measure.

Uniqueness and convergence:

THEOREM (DOOB THEOREM)

Assume that $\{P_t\}$ admits an invariant measure μ_* , and is t_0 -regular, i.e., $\exists t_0 > 0$, $P_{t_0}(x,\cdot)$ are mutually equivalent for all $x \in \mathcal{X}$. Then μ_* is unique, and $P_t \mu \to \mu_*$ in total variation distance for all $\mu \in \mathcal{P}(\mathcal{X})$.

• Strong Feller (\Rightarrow EMDS) + irreducibility $\Rightarrow t_0$ -regularity \Rightarrow uniqueness (Da Prato, Zabczyk, 1996¹)

¹Ergodicity for infinite dimensional systems

• Existence:

THEOREM (KRYLOV-BOGOLIUBOV THEOREM)

Assume $\{P_t\}$ is Feller and $Q_t\nu:=t^{-1}\int_0^t P_s\nu ds$ is tight for some $\nu\in\mathcal{P}(\mathcal{X})$:

$$(\forall \epsilon > 0)(\exists \ \textit{compact set} \ \textit{K})(\forall t \geq 0)(\textit{Q}_t\nu(\textit{K}) \geq 1 - \epsilon).$$

Then $\{P_t\}$ admits an invariant measure.

Uniqueness and convergence:

THEOREM (DOOB THEOREM)

Assume that $\{P_t\}$ admits an invariant measure μ_* , and is t_0 -regular, i.e., $\exists t_0 > 0, \ P_{t_0}(x,\cdot)$ are mutually equivalent for all $x \in \mathcal{X}$. Then μ_* is unique, and $P_t \mu \to \mu_*$ in total variation distance for all $\mu \in \mathcal{P}(\mathcal{X})$.

• Strong Feller (\Rightarrow EMDS) + irreducibility $\Rightarrow t_0$ -regularity \Rightarrow uniqueness (Da Prato, Zabczyk, 1996¹)

¹Ergodicity for infinite dimensional systems

• Existence:

THEOREM (KRYLOV-BOGOLIUBOV THEOREM)

Assume $\{P_t\}$ is Feller and $Q_t\nu:=t^{-1}\int_0^t P_s\nu ds$ is tight for some $\nu\in\mathcal{P}(\mathcal{X})$:

$$(\forall \epsilon > 0)(\exists \text{ compact set } K)(\forall t \geq 0)(Q_t \nu(K) \geq 1 - \epsilon).$$

Then $\{P_t\}$ admits an invariant measure.

Uniqueness and convergence:

THEOREM (DOOB THEOREM)

Assume that $\{P_t\}$ admits an invariant measure μ_* , and is t_0 -regular, i.e., $\exists t_0 > 0$, $P_{t_0}(x,\cdot)$ are mutually equivalent for all $x \in \mathcal{X}$. Then μ_* is unique, and $P_t \mu \to \mu_*$ in total variation distance for all $\mu \in \mathcal{P}(\mathcal{X})$.

- Strong Feller (\Rightarrow EMDS) + irreducibility $\Rightarrow t_0$ -regularity \Rightarrow uniqueness (Da Prato, Zabczyk, 1996¹).
- ¹Ergodicity for infinite dimensional systems.

Uniqueness = EMDS + irreducibility:

Asymptotic strong Feller (⇒ EMDS) + weak irreducibility
 ⇒ uniqueness (Hairer, Mattingly, 2006¹);

Remark

Asymptotic strong Feller at $z \Rightarrow z \notin \text{supp } \mu \cap \text{supp } \nu$

¹Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing, *Ann. of Math. (2).*

Uniqueness = EMDS + irreducibility:

• Asymptotic strong Feller (\Rightarrow EMDS) + weak irreducibility \Rightarrow uniqueness (Hairer, Mattingly, 2006¹);

Remark

Asymptotic strong Feller at $z \Rightarrow z \notin \text{supp } \mu \cap \text{supp } \nu$

¹Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing, *Ann. of Math.* (2).

Uniqueness = EMDS + irreducibility:

• Asymptotic strong Feller (\Rightarrow EMDS) + weak irreducibility \Rightarrow uniqueness (Hairer, Mattingly, 2006¹);

Remark

Asymptotic strong Feller at $z \Rightarrow z \notin \text{supp } \mu \cap \text{supp } \nu$

¹Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing, *Ann. of Math.* (2).

DEFINITION (EQUICONTINUOUS)

 ${\mathcal F}$ a family of real-valued functions on ${\mathcal X}.$ Say ${\mathcal F}$ is equicontinuous at z, such that

$$\limsup_{x \to z} \sup_{f \in \mathcal{F}} |f(x) - f(z)| = 0.$$

Definition (Lasota, Szarek 2006 ¹, Szarek 2006 ²)

A Markov semigroup $\{P_t\}_{t\in\mathcal{T}}$ satisfies the e-property, at $z\in\mathcal{X}$, if for every $f\in L_b(\mathcal{X})$,

$$\limsup_{x \to z} \sup_{t \in T} |P_t f(x) - P_t f(z)| = 0,$$

Similarly, $\{P_t\}_{t\in T}$ satisfies the Cesàro e-property at $z\in \mathcal{X}$, if for every $f\in L_b(\mathcal{X})$,

$$\limsup_{x\to z} \sup_{t\in T} |Q_t f(x) - Q_t f(z)| = 0.$$

Existence

LBC, LOWER BOUNDED CONDITION

 \exists compact set $K \in \mathcal{X}$, for every open neighbourhood U of K, $\exists x \in \mathcal{X}$ such that

$$\limsup_{t\to\infty} Q_t(x,U) > 0.$$

Theorem (Lasota, Szarek 2006 ¹, Szarek 2006 ²)

Assume $\{P_t\}$ be a Markov-Feller semigroup with the e-property and LBC holds, Then $\{P_t\}$ admits an invariant measure.

- e-property \Rightarrow EMDS (see Worm 2010 3)
- EMDS+ weakly topological irreducible ⇒ uniqueness

 $^{^{1}\}mbox{Lower}$ bound technique in the theory of a stochastic differential equation,

J. Differential Equations.

²Feller process on nonlocally compact spaces, Ann. of Probab.

³Worm, Ph.D thesis 2010

- Equicontinuous
 - 1964, Rosenblatt, Equicontinuous Markov operator, Compact Hausdorff space
 - 2005, Zaharopol, generalize to locally compact separable metric space
- lower bound technique
 - 1940, Doeblin
 - 1973, 1994, Lasota and Yorke, non-expansive Markov operator, lower bound technique
 - 2003, Szarek, non-expansive Markov semigroup+concentrating
- 2006, Lasota and Szarek, Szarek non-locally compact space Equicontinuous+ lower bound technique

THEOREM

Let μ_n be a family of probability measure on a Polish space (\mathcal{X}, ρ) , then $(\mu_n, n \ge 1)$ is tight, iff $\forall \varepsilon > 0, \exists$ compact set K, s.t.

$$\sup_{n} \mu_{n}(K^{\varepsilon}) \geq 1 - \varepsilon, \ K^{\varepsilon} = \{x, \rho(x, K) < \varepsilon\}.$$

- 1) K^{ε} is an open set.
- 2) Roughly speaking, $\mu_n(K^{\varepsilon} \setminus K) < \frac{\varepsilon}{2}$ should be described by Lip functions.

EXAMPLE (Non-equicontinuous semigroup 1)

$$\mathcal{X} = \{1/n\}_{n \geq 1} \cup \{0\}. \ P\delta_0 = P\delta_1 = \delta_0, \ P\delta_{1/n} = \delta_{1/(n-1)}, \ n \geq 2.$$

E-property fails at 0: $f(1) \equiv P^{n-1}f(1/n) \rightarrow f(0)$.

OUTLINE

- 1 Background
 - Ergodicity for Dynamical System
 - Ergodicity for Markov Processes
 - EMDS and regularity of Markov semigroup
 - Equicontinuity and Lower bound technique
- 2 Ergodicity for eventually equicontinuous Markov-Feller semigroup
 - Eventually equicontinuous Markov-Feller semigroup
 - Ergodicity for Eventually continuous semigroup
 - Asymptotic stability
 - Relation with the e-property
- 3 APPLICATIONS
 - Place-dependent iterated function systems
 - Asymptotic stability of SPDEs

DEFINITION (EVENTUAL EQUICONTINUITY)

• $\{P_t\}_{t\geq 0}$ is *eventually continuous* at $z\in \mathcal{X}$, if for any bounded Lipschitz function f,

$$\limsup_{x\to z} \limsup_{t\to\infty} |P_t f(x) - P_t f(z)| = 0,$$

that is,

$$(\forall \epsilon > 0)(\exists \delta > 0)(\forall x \in B(z, \delta))(\exists T_x \ge 0)(\forall t \ge T_x))$$
$$(|P_t f(x) - P_t f(z)| < \epsilon.$$

• $\{P_t\}_{t\geq 0}$ is Cesàro eventually continuous at z, if for any bounded Lipschitz function f,

$$\limsup_{x\to z} \limsup_{t\to\infty} |Q_t f(x) - Q_t f(z)| = 0.$$

- 2013, Jaroszewska: asymptotic equicontinuous ¹
- 2015, Gong and Liu Yuan: Eventually continuous ²

DEFINITION (ASYMPTOTICALLY STABLE)

 $\{P_t\}_{t\geq 0}$ is asymptotically stable if there exists a unique invariant measure $\mu_*\in\mathcal{M}_1(\mathcal{X})$, and $P_t\mu$ converges weakly to μ_* as $t\to\infty$ for all $\mu\in\mathcal{P}(\mathcal{X})$.

Proposition (Jaroszewska, 2013¹)

If $\{P_t\}$ is asymptotically stable, then $\{P_t\}$ is eventually continuous on \mathcal{X} .

¹On Asymptotic equicontinuity of Markov transition functions, *Stat. Probab. Lett.*

ERGODICITY FOR EVENTUALLY CONTINUOUS SEMIGROUP

- Existence of invariant measure
- Support properties
- Unique ergodicity
- Beyond support
- Ergodic decomposition

EXISTENCE OF INVARIANT MEASURE

THEOREM (GONG, LIU YUAN 2015)

Suppose Q_t is eventually continuous at some z, and satisfies for any O_z ,

$$\limsup_{t\to\infty} Q_t(z,O_z) > 0.$$

Then, $\{Q_t\}$ is tight.

ERGODIC PROPERTIES OF EVENTUALLY CONTINUOUS SEMIGROUP

From Zaharopol 2005¹, consider

$$\mathcal{T} = \big\{x \in \mathcal{X} : \{\mathit{Q}_t(x,\cdot)\}_{t \geq 0} \text{ is tight}\big\}.$$

Theorem (Gong, L. Liu, Liu 2023a+, Gong, Liu 2015) $\{Q_t\}$ is eventually continuous on \mathcal{X} , then

Proposition (Gong, L. Liu, Liu 2023a+)

Assume that $\{P_t\}$ is Cesàro eventually continuous on \mathcal{X} and $\mathcal{T} \neq \emptyset$.

- (1) $\forall x \in \mathcal{T}$, $Q_t(x, \cdot)$ converges to some invariant measure as $t \to \infty$.
- (2) Let μ be an invariant measure, then supp $\mu \subset \mathcal{T}$, where supp $\mu := \{x \in \mathcal{X} : \mu(B(x, \epsilon)) > 0 \text{ for every } \epsilon > 0\}.$
- (3) Let μ_* be an ergodic measure and $x \in \operatorname{supp} \mu_*$, then $Q_t(x,\cdot)$ weakly converges to μ_* as $t \to \infty$.
- (4) \mathcal{T} is closed in \mathcal{X} .

THEOREM (GONG, L. LIU, LIU 2023a+)

Assume that $\{P_t\}$ is Cesàro eventually continuous on \mathcal{X} . Assume there exists $z \in \mathcal{X}$, such that for all $x \in \mathcal{X}$ and $\epsilon > 0$,

$$\limsup_{t\to\infty} Q_t(x,B(z,\epsilon))>0.$$

Then there exists unique invariant measure μ_* . Moreover, $Q_t(x,\cdot)$ weakly converges to μ_* as $t \to \infty$ for all $x \in \mathcal{T}$.

THEOREM (GONG, L. LIU, LIU 2023a+)

Assume that $\{P_t\}$ is Cesàro eventually continuous on \mathcal{X} . Then the following statements are equivalent:

- (1) There exists unique invariant measure μ_* , and $Q_t(x,\cdot)$ weakly converges to μ_* as $t \to \infty$ for all $x \in \mathcal{X}$;
- (2) There exists some $z \in \mathcal{X}$, such that for all $\epsilon > 0$,

$$\inf_{x \in \mathcal{X}} \limsup_{t \to \infty} Q_t(x, B(z, \epsilon)) > 0.$$

• $\{P_t\}_{t\geq 0}$ is *sweeping* from some family $\mathcal A$ of Borel subsets of $\mathcal X$ if

$$\lim_{t \to \infty} P_t \mu(A) = 0$$

for all $\mu \in \mathcal{P}(\mathcal{X})$ and $A \in \mathcal{A}$.

Proposition (Gong, L. Liu, Liu 2023a+))

Let $\{P_t\}_{t\geq 0}$ be Cesàro eventually continuous on \mathcal{X} . Assume there exists $z\in\mathcal{X}$, such that for all $x\in\mathcal{X}$ and $\epsilon>0$,

$$\limsup_{t\to\infty} Q_t(x,B(z,\epsilon))>0.$$

Then $\{P_t\}_{t\geq 0}$ is sweeping from compact sets disjoint from \mathcal{T} .

Theorem (Gong, L. Liu, Liu 2023a+)

Assume that $\{P_t\}$ is Cesàro eventually continuous on \mathcal{X} . Assume there exists compact set $K \subset \mathcal{X}$, for all $x \in \mathcal{X}$ and $\epsilon > 0$,

$$\limsup_{t\to\infty} Q_t(x,K^{\epsilon}) > 0,$$

where $K^{\epsilon} := \{ y \in \mathcal{X} : \rho(x, y) < \epsilon, x \in K \}$. Then exists Borel set $K_0 \subset K$ such that

- (1) for any ergodic measure μ , there exists $x \in K_0$, such that $\mu = \lim_{t \to \infty} Q_t \delta_x$ Denote μ by μ_x .
- (2) For any $x, y \in K_0$, $x \neq y$, then $\mu_x \neq \mu_y$.
- (3) $x \in \text{supp } \mu_x \text{ for all } x \in K_0.$

THEOREM (GONG, L., LIU, LIU, 2023b+)

Assume that $\{P_t\}$ is eventually continuous on \mathcal{X} . Then the following statements are equivalent:

- (1) $\{P_t\}$ is asymptotically stable with unique invariant measure μ .
- (2) There exists some $z \in \mathcal{X}$ and $\epsilon > 0$,

$$\inf_{x \in \mathcal{X}} \liminf_{t \to \infty} P_t(x, B(z, \epsilon)) > 0.$$

THEOREM (L., LIU, 2023)

Let $\{P_t\}$ be eventually continuous on $\mathcal X$ and stochastically continuous, i.e., $P_t\delta_x\to\delta_x$ as $t\to 0_+$ for $x\in\mathcal X$. Let μ be an ergodic measure for $\{P_t\}$.

If $\operatorname{Int}_{\mathcal{X}}(\operatorname{supp} \mu) \neq \emptyset$, then $\{P_t\}$ satisfies the e-property on $\operatorname{Int}_{\mathcal{X}}(\operatorname{supp} \mu)$.

Let $\mathcal{X}_{\mu} := (\text{supp } \mu, \rho)$ be the Polish space in its relative topology.

Theorem (L., Liu, 2023)

Under same assumptions, $\{P_t\}$ have the e-property on \mathcal{X}_{μ} if and only if it has the eventual continuity on \mathcal{X}_{μ} .

OUTLINE

- 1 Background
 - Ergodicity for Dynamical System
 - Ergodicity for Markov Processes
 - EMDS and regularity of Markov semigroup
 - Equicontinuity and Lower bound technique
- 2 Ergodicity for eventually equicontinuous Markov-Feller semigroup
 - Eventually equicontinuous Markov-Feller semigroup
 - Ergodicity for Eventually continuous semigroup
 - Asymptotic stability
 - Relation with the e-property
- 3 Applications
 - Place-dependent iterated function systems
 - Asymptotic stability of SPDEs

PLACE-DEPENDENT ITERATED FUNCTION SYSTEMS

Applications:

- Photoconductive detectors;
- Growth of the size of structural population;
- Motion of relativistic particles;
- Fermions and bosons.

Related results: Lasota, Yorke, 1994¹; Bessaih, Kapica, Szarek, 2014²; Czapla, Horbacz, 2014³; Kapica, Ślęczka, 2020⁴.

¹Lower bound technique for Markov operators and iterated function systems, *Random Comput. Dynam.*

 $^{^2\}mbox{Criterion}$ on stability for Markov processes applied to a model with jumps, Semigroup Forum.

³Equicontinuity and stability properties of Markov chains arising from iterated function systems on Polish spaces, *Stoch. Anal. Appl.*

⁴Random iteration with place dependent probabilities, *Probab. Math.*Statist.

Example: Gong, L., Liu, Liu, 2023b+

- $\mathcal{X} = \mathbb{R}_+$, and $\Phi_x(0) = x \in \mathcal{X}$.
- $\{\tau_n\}_{n\geq 0}$: $\tau_0=0$, $\Delta\tau_n=\tau_n-\tau_{n-1}$ i.i.d. with density $e^{-t},\ t\geq 0$.
- After each exponential time $\Delta \tau_n$,

$$\Phi_{\mathbf{X}}(\tau_{\mathbf{n}}) \left\{ \begin{array}{ll} \text{jumps to } 0, & \textit{w.p.} & \textit{p}_1(\Phi_{\mathbf{X}}(\tau_{n-1})), \\ \text{stays at } \Phi_{\mathbf{X}}(\tau_{n-1}), & \textit{w.p.} & \textit{p}_2(\Phi_{\mathbf{X}}(\tau_{n-1})), \\ \text{jumps to } \Phi_{\mathbf{X}}(\tau_{n-1})^{-1}, & \textit{w.p.} & \textit{p}_3(\Phi_{\mathbf{X}}(\tau_{n-1})). \end{array} \right.$$

- $\Phi_{\mathsf{X}}(t) = \Phi_{\mathsf{X}}(\tau_{\mathsf{n}-1})$ for $\tau_{\mathsf{n}-1} \leq t < \tau_{\mathsf{n}}$.
- Let

$$(p_1(x), p_2(x), p_3(x)) = \begin{cases} (\frac{x}{2}, 1 - x, \frac{x}{2}), & 0 \le x < \frac{2}{3}, \\ (\frac{1}{3}, \frac{1}{3}, \frac{1}{3}), & \frac{2}{3} \le x \le \frac{3}{2}, \\ (\frac{1}{2x}, 1 - x^{-1}, \frac{1}{2x}), & x > \frac{3}{2}. \end{cases}$$

- Asymptotically stable with unique invariant measure δ_0 .
- Eventually continuous on \mathcal{X} .
- E-property fails at 0.

.

ASYMPTOTIC STABILITY OF SPDES WITH MULTIPLICATIVE NOISE

- Feller property;
- Eventual continuity: generalized coupling approach;
- Lower bound condition: uniform irreducibility + energy estimates.

- 2D stochastic Navier-Stokes equation posed on a domain
- Modified Lagrangian observation process
- 2D stochastic hydrostatic Navier-Stokes: d-eventually continuous.
- Stochastic fractionally dissipative Euler model: d-eventually continuous
- Damped stochastically forced Euler-Voigt model: d-Feller
- Damped stochastic nonlinear wave equation: degenerate equation:

Further Problem:

- Non-Feller Markov semigroup;
- Verify the lower bound condition case by case;
- Weaken the uniform irreducibility condition;
- Relation between the asymptotic strong Feller and the eventual continuity;
- Exponential convergence and exponential convergence rate.

REFERENCES

Liu, Y. and Liu, Z. (2023). Relation between the eventual continuity and the e-property. arXiv preprint arXiv:2302.08755. Accepted by Acta Mathematicae Applicatae Sinica, English Series.

Gong, F., Liu, Y., Liu, Y., and Liu, Z. (2023a+). Some properties of eventually continuous Markov-Feller semigroups on Polish spaces. *Manuscript*.

Gong, F., Liu, Y., Liu, Y., and Liu, Z. (2023b+). Asymptotic stability for non-equicontinuous Markov semigroups. arXiv preprint arXiv:2302.11782.

Gong, F., Liu, Y., Liu, Y., and Liu, Z. (2023c+). Eventual continuity approach to verifying unique ergodicity of SPDEs. *in progress*.

Thanks

References I

- Bessaih, H. and Kapica, R. and Szarek, T. Criterion on stability for Markov processes applied to a model with jumps. *Semigroup Forum* **88(1)** (2014), 76 92.
- Butkovsky, O., Kulik, A. and Scheutzow, M. Generalized couplings and ergodic rates for SPDEs and other Markov models. *Ann. Appl. Probab.* **30(1)** (2020), 1 39.
- Czapla, D. A criterion on asymptotic stability for partially equicontinuous Markov operators. *Stoch. Proc. Appl.* **128(11)** (2017), 3656 3678.
- Coti Zelati, M. and Hairer, M. A noise-induced transition in the Lorenz system. *Comm. Math. Phys.* **383(3)** (2021), 2243 ––2274.
- Dong, Z. and Peng, X.-H. Ergodicity of the 2D Navier-Stokes equations with degenerate multiplicative noise. *Acta Math. Appl. Sin. Engl. Ser.* **34** (2018), 97 118.
- Da Prato, G. and Zabczyk, J. Ergodicity for infinite dimensional systems. Cambridge Univ. Press, Cambridge, (1996).

References II

- Gao, P.-P., Liu, Y., Sun, Y., Zheng Z.-H. Large deviations principle for stationary solutions of stochastic differential equations with multiplicative noise. arXiv preprint, arXiv:2206.02356. (2022).
- Glatt-Holtz, N., Mattingly, J. C. and Richards, G. On unique ergodicity in nonlinear stochastic partial differential equations. *J. Stat. Phys.*, **166(3)** (2017), 618 –649.
- Gong, F.-Z. and Liu, Y. Ergodicity and asymptotic stability of Feller semigroups on Polish metric space. *Sci. China Math.* **58(6)** (2015), 1235–1250.
- Hairer, M. and Mattingly, J. C. Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing. *Ann. of Math.* (2) **164(3)** (2006), 993–1032.
- Hairer, M., Mattingly, J. C. and Scheutzow, M. Asymptotic coupling and a general form of Harris'theorem with applications to stochastic delay equations. *Probab. Theory Related Fields* **149(1)** (2011), 223 259.
- Hille, S.C., Szarek, T. and Ziemlańska, M. Equicontinuous families of Markov operators in view of asymptotic stability. *C. R. Math. Acad. Sci. Paris*, **355(12)** (2017), 1247 1251.

References III

Jaroszewska, J. The asymptotic strong Feller property does not imply the e-property for Markov-Feller semigroups. arXiv preprint, arXiv:1308.4967. (2013).

Kulik, A. and Scheutzow, M. Generalized couplings and convergence of transition probabilities. *Probab. Theory Related Fields*, **171(1)** (2018), 333 – 376.

Lasota, A. and Szarek, T. Lower bound technique in the theory of a stochastic differential equation. *J. Differential Equations* **231** (2006), 513–533.

Lasota, A. and Yorke, J. A. Lower bound technique for Markov operators and iterated function systems. *Random Comput. Dynam* **2(1)** (1994), 41 - 77.

Liu, Y. Random Hopf bifurcation of Random Hopf's model for turbulence. *Personal notes* (2008).

References IV

Röckner, M., Zhu, R.-C. and Zhu, X.-C. Ergodicity for the stochastic quantization problems on the 2D-torus *Comm. Math. Phys.* **352(3)** (2017), 1061 –1090.

Szarek, T. Feller processes on nonlocally compact spaces. *Ann. Probab.* **34(5)** (2006), 1849 - 1863.

Zhang, X.-C. Exponential ergodicity of non-Lipschitz stochastic differential equations. *Proc. Amer. Math. Soc.* **137(1)** (2009), 329 – 337.

PLACE-DEPENDENT ITERATED FUNCTION SYSTEMS: GENERAL MODEL

- $w_i: \mathcal{X} \to \mathcal{X}, i \in I = \{1, \dots, N\}$: transformations on \mathcal{X} ,
- $\{S(t)\}_{t\geq 0}$: continuous semigroup on \mathcal{X} ,
- $(p_1(x), \dots, p_N(x))$: probabilistic vector for each x, i.e., $\sum_{i \in I} p_i(x) = 1$ and $p_i(x) \ge 0$ for $i \in I$,
- $\{\tau_n\}_{n\geq 1}$: $\tau_0=0$, $\Delta\tau_n=\tau_n-\tau_{n-1}, n\geq 1$, i.i.d. with density $\lambda e^{-\lambda t}, \ \lambda>0$.

Define $\Phi = {\Phi^{x}(t) : x \in \mathcal{X}_{t \geq 0}}$ in the following way.

- 1. Let $x \in \mathcal{X}$. Denote $\Phi_0^x := x$.
- **2**. Let $\xi_1 = S(\tau_1)(x)$. Randomly choose $i_1 \in I$ *w.p.* $p_{i_1}(\xi_1)$, i.e., $\mathbb{P}(i_1 = k) = p_k(\xi_1)$, for $k \in I$. Set $\Phi_i^x := w_{i_1}(\xi_1)$.
- **3**. Recursively, define $\xi_n = S(\triangle \tau_n)(\Phi_{n-1}^x)$. Further, randomly choose $i_n \in I$ w.p. $p_{i_n}(\xi_n)$, and let $\Phi_n^x = w_{i_n}(\xi_n)$.
- 4. Set $\Phi^{x}(t) := S(t \tau_{n})(\Phi_{n}^{x}), \ \tau_{n} < t < \tau_{n+1}, \ n > 0.$

Then $P_t f(x) := \mathbb{E} f(\Phi^x(t))$ for each bounded measurable function f(x)

Observations:

- ullet E-property \Rightarrow Eventual e-property $^1 \Rightarrow$ Eventual continuity
- Asymptotic stability ⇒ Completely mixing ⇒ Eventual continuity
- Asymptotic strong Feller
 ⇒ Eventual continuity/ E-property²

Theorem (Hille, Szarek, Ziemlańska, 2017³)

Let P be an asymptotically stable Feller operator and μ_* be its unique invariant measure. If $\operatorname{Int}_{\mathcal{X}}(\operatorname{supp} \mu_*) \neq \emptyset$, then P satisfies the e-property on X.

Example 1: $\mathcal{X} = [0, 1]$, $P_t \delta_x = \delta_{x + \pi t \mod 1}$, $t \ge 0$. **Example 2**: $\mathcal{X} = [0, +\infty)$, $P_t \delta_x = \delta_{xe^{-t}}$, $t \ge 0$.

¹A criterion on asymptotic stability for partially equicontinuous Markov operators, *Stoch. Proc. Appl.*

²The asymptotic strong Feller property does not imply the e-property for Markov-Feller semigroups, *arXiv*.

³Equicontinuous families of Markov operators in view of asymptotic stability,

Observations:

- E-property \Rightarrow Eventual e-property $^1 \Rightarrow$ Eventual continuity
- Asymptotic stability ⇒ Completely mixing ⇒ Eventual continuity
- Asymptotic strong Feller
 ⇒ Eventual continuity/ E-property²

Theorem (Hille, Szarek, Ziemlańska, 2017³)

Let P be an asymptotically stable Feller operator and μ_* be its unique invariant measure. If $\operatorname{Int}_{\mathcal{X}}(\operatorname{supp} \mu_*) \neq \emptyset$, then P satisfies the e-property on X.

Example 1:
$$\mathcal{X} = [0,1]$$
, $P_t \delta_x = \delta_{x+\pi t \mod 1}$, $t \ge 0$.
Example 2: $\mathcal{X} = [0,+\infty)$, $P_t \delta_x = \delta_{xe^{-t}}$, $t \ge 0$.

¹A criterion on asymptotic stability for partially equicontinuous Markov operators, *Stoch. Proc. Appl.*

²The asymptotic strong Feller property does not imply the e-property for Markov-Feller semigroups, *arXiv*.

³Equicontinuous families of Markov operators in view of asymptotic stability,

Gradient estimates

Strong Feller:

$$|\nabla P_t f(x)| \leq C(x)||f||_{\infty};$$

Asymptotic strong Feller:

$$|\nabla P_t f(x)| \le C(x)(||f||_{\infty} + \delta_t ||\nabla f||_{\infty}), \quad \delta_t \to 0;$$

E-property:

$$|\nabla P_t f(x)| \le C(x)(||f||_{\infty} + ||\nabla f||_{\infty});$$

• Eventual continuity:

$$|\langle \nabla P_t f(x), h \rangle| \le C(x, h)(||f||_{\infty} + ||\nabla f||_{\infty}).$$

LOWER BOUND CONDITION

• Target: $\exists z \in \mathcal{X}$, $\forall \epsilon > 0$,

$$\inf_{x \in \mathcal{X}} \liminf_{t \to \infty} P_t(x, B(z, \epsilon)) > 0.$$
 (*)

- Uniform irreducibility + energy estimates ⇒ (*)
- $\bullet \ \{P_t\}_{t\geq 0} \text{ generated by } \{\mathbf{u}^{\mathsf{x}}(t)\}_{t\geq 0, \mathsf{x}\in\mathcal{X}} \text{, i.e., } P_t \mathit{f}(\mathsf{x}) = \mathbf{E}\mathit{f}(\mathbf{u}^{\mathsf{x}}(t)).$
- $\mathbf{H_1} \ \{P_t\}_{t\geq 0}$ is called *uniformly irreducible* at $z\in\mathcal{X}$, if for any $\epsilon>0,\ R>0$, there exists $T=T(\epsilon,R)>0$ such that

$$\inf_{x \in B(z,R)} P_T(x,B(z,\epsilon)) > 0.$$

 $\mathbf{H_2} \ \exists z \in \mathcal{X}, \ k \geq 1, \ C > 0$, such that for each $x \in \mathcal{X}$, there exists a nonincreasing function $r_x : \mathbb{R}_+ \to \mathbb{R}_+$ with $\lim_{t \to \infty} r_x(t) = 0$, and that

$$\mathbb{E}\,\rho(\mathbf{u}^{\mathsf{x}}(t),z)^{\mathsf{k}}\leq r_{\mathsf{x}}(t)+\mathsf{C}.$$

PROPOSITION

Assume H_1 and H_2 . Then the lower bound condition (*) holds.

Proof sketch of eventual continuity

• 2D stochastic Navier-Stokes equation:

$$d\mathbf{u}^{x} + \mathbf{u}^{x} \cdot \nabla \mathbf{u}^{x} dt = (\nu \Delta \mathbf{u}^{x} - \nabla \rho) dt + \sigma(\mathbf{u}^{x}) dW_{t}, \quad \mathbf{u}_{0}^{x} = x.$$

Coupled equation:

$$d\widetilde{\mathbf{u}}^{y} + \widetilde{\mathbf{u}}^{y} \cdot \nabla \widetilde{\mathbf{u}}^{y} dt = (\nu \Delta \widetilde{\mathbf{u}}^{y} - \nabla \widetilde{\boldsymbol{\rho}}) dt + \sigma(\widetilde{\mathbf{u}}^{y}) dW_{t} + \frac{\nu \lambda_{N}}{2} P_{N}(\mathbf{u}^{x} - \widetilde{\mathbf{u}}^{y}) dt, \quad \widetilde{\mathbf{u}}^{y} = (\nu \Delta \widetilde{\mathbf{u}}^{y} - \nabla \widetilde{\boldsymbol{\rho}}) dt + \sigma(\widetilde{\mathbf{u}}^{y}) dW_{t} + \frac{\nu \lambda_{N}}{2} P_{N}(\mathbf{u}^{x} - \widetilde{\mathbf{u}}^{y}) dt, \quad \widetilde{\mathbf{u}}^{y} = (\nu \Delta \widetilde{\mathbf{u}}^{y} - \nabla \widetilde{\boldsymbol{\rho}}) dt + \sigma(\widetilde{\mathbf{u}}^{y}) dW_{t} + \frac{\nu \lambda_{N}}{2} P_{N}(\mathbf{u}^{x} - \widetilde{\mathbf{u}}^{y}) dt, \quad \widetilde{\mathbf{u}}^{y} = (\nu \Delta \widetilde{\mathbf{u}}^{y} - \nabla \widetilde{\boldsymbol{\rho}}) dt + \sigma(\widetilde{\mathbf{u}}^{y}) dW_{t} + \frac{\nu \lambda_{N}}{2} P_{N}(\mathbf{u}^{x} - \widetilde{\mathbf{u}}^{y}) dt, \quad \widetilde{\mathbf{u}}^{y} = (\nu \Delta \widetilde{\mathbf{u}}^{y} - \nabla \widetilde{\boldsymbol{\rho}}) dt + \sigma(\widetilde{\mathbf{u}}^{y}) dW_{t} + \frac{\nu \lambda_{N}}{2} P_{N}(\mathbf{u}^{x} - \widetilde{\mathbf{u}}^{y}) dt, \quad \widetilde{\mathbf{u}}^{y} = (\nu \Delta \widetilde{\mathbf{u}}^{y} - \nabla \widetilde{\boldsymbol{\rho}}) dt + \sigma(\widetilde{\mathbf{u}}^{y}) dW_{t} + \frac{\nu \lambda_{N}}{2} P_{N}(\mathbf{u}^{x} - \widetilde{\mathbf{u}}^{y}) dt, \quad \widetilde{\mathbf{u}}^{y} = (\nu \Delta \widetilde{\mathbf{u}}^{y} - \nabla \widetilde{\boldsymbol{\rho}}) dt + \sigma(\widetilde{\mathbf{u}}^{y}) dW_{t} + \frac{\nu \lambda_{N}}{2} P_{N}(\mathbf{u}^{x} - \widetilde{\mathbf{u}}^{y}) dt, \quad \widetilde{\mathbf{u}}^{y} = (\nu \Delta \widetilde{\mathbf{u}}^{y} - \nabla \widetilde{\boldsymbol{\rho}}) dt + \sigma(\widetilde{\mathbf{u}}^{y}) dW_{t} + \frac{\nu \lambda_{N}}{2} P_{N}(\mathbf{u}^{x} - \widetilde{\mathbf{u}}^{y}) dt, \quad \widetilde{\mathbf{u}}^{y} = (\nu \Delta \widetilde{\mathbf{u}}^{y} - \nabla \widetilde{\boldsymbol{\rho}}) dV_{t} + \frac{\nu \lambda_{N}}{2} P_{N}(\mathbf{u}^{x} - \widetilde{\mathbf{u}}^{y}) dV_{t} + \frac{\nu \lambda_{N}}{2} P_{N}$$

ullet Control the difference $\mathbf{v}^{x,y}:=\mathbf{u}^x-\widetilde{\mathbf{u}}^y$

LEMMA (LIU, L., 2023+)

Under suitable assumptions, then

- (1) $\mathbf{v}_{t}^{\mathsf{x},\mathsf{y}}$ converges to 0 almost surely as $t \to \infty$;
- $(2) \ d_{TV}(\operatorname{Law}(P_t(y,\cdot)),\operatorname{Law}(\widetilde{\mathbf{u}}_t^y)) \leq C_1|x-y|^{C_2}\exp(C_3|x|^2), \ t \geq 0.$

• 2D stochastic Navier-Stokes equation posed on a domain:

$$\begin{cases} d\mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} dt = (\nu \Delta \mathbf{u} - \nabla p) dt + \sum_{k=1}^{m} \sigma_k(\mathbf{u}) dW^k, \\ \mathbf{u}(0) = x, \quad \nabla \cdot \mathbf{u} = 0, \quad \mathbf{u}|_{\partial D} = 0. \end{cases}$$

Degenerate multiplicative noise (Odasso, 2008^1 ; Dong, Peng, 2018^2).

Modified Lagrangian observation process:

$$d\mathbf{u} = A\mathbf{u}dt + B(\mathbf{u}, \mathbf{u})dt + Q^{1/2}(\mathbf{u})dW, \quad \mathbf{u}(0) = x.$$

Additive noise: Malliavin calculus (Komorowski, Szymon, Szarek, 2010³).

¹Exponential mixing for stochastic PDEs: the non-additive case, *Probab. Theory Related Fields*.

²Ergodicity of the 2D Navier-Stokes equations with degenerate multiplicative noise, *Acta Math. Appl. Sin. Engl. Ser.*

• 2D stochastic hydrostatic Navier-Stokes: d-eventually continuous.

$$\begin{cases} du + (u\partial_{z_1}u + w\partial_{z_2}u - \nu\Delta u + \partial_{z_1}p)dt = \sum_{k=1}^m \sigma_k(u)dW^k, \\ \partial_{z_2}p = 0, \quad \partial_{z_1}u + w\partial_{z_2}w = 0, \quad u(0) = x, \quad u|_{\Gamma_l} = \partial_{z_2}u|_{\Gamma_h} = w|_{\Gamma_h} = 0. \end{cases}$$

 Stochastic fractionally dissipative Euler model: d-eventually continuous.

$$\begin{cases} d\xi + (\Lambda^{\gamma}\xi + \mathbf{u} \cdot \nabla \xi)dt = \sum_{k=1}^{m} \sigma_{k}(\mathbf{u})dW^{k}, \\ \mathbf{u} = \mathcal{K} * \xi. \end{cases}$$

• Damped stochastically forced Euler-Voigt model: d-Feller.

$$\begin{cases} d\mathbf{u} + (\nu \mathbf{u} + \mathbf{u}_{\gamma} \cdot \nabla \mathbf{u}_{\gamma} + \nabla \rho) dt = \sum_{k=1}^{m} \sigma_{k}(\mathbf{u}) dW_{t}^{k}, \\ \mathbf{u}(0) = x, \quad \nabla \cdot \mathbf{u} = 0, \quad \Lambda^{\gamma} \mathbf{u}_{\gamma} = \mathbf{u}. \end{cases}$$

Damped stochastic nonlinear wave equation: degenerate equation.

$$\begin{cases} \frac{\partial_{tt} u + \alpha \partial_t u - \Delta u + \beta \sin(u) = \sum_{k=1}^m \sigma_k(u) dW^k, \\ u(0) = u_0, \quad \partial_t u(0) = v_0, \quad u|_{\partial D} = 0. \end{cases}$$

ERGODICITY OF MARKOV PROCESSES

 (\mathcal{X}, ρ) : Polish space

 $\mathcal{M}(\mathcal{X})$: signed measures on \mathcal{X}

 $\mathcal{M}_1(\mathcal{X})$: probability measures on \mathcal{X}

DEFINITION (MARKOV OPERATOR)

 $P:\mathcal{M}(\mathcal{X}) o \mathcal{M}(\mathcal{X})$ is a Markov operator on \mathcal{X} , if

- (1) (Positive linearity) $P(\lambda_1\mu_1 + \lambda_2\mu_2) = \lambda_1P\mu_1 + \lambda_2P\mu_2$ for $\lambda_1, \lambda_2 \geq 0$; $\mu_1, \mu_2 \in \mathcal{M}(\mathcal{X})$;
- (2) (Preservation of the norm) $P\mu(\mathcal{X}) = \mu(\mathcal{X})$ for $\mu \in \mathcal{M}(\mathcal{X})$.

DEFINITION (REGULAR MARKOV OPERATOR)

P is regular, exists a linear operator $P^*: B_b(\mathcal{X}) o B_b(\mathcal{X})$ such that

$$\langle f, P\mu \rangle = \langle P^*f, \mu \rangle$$
 for all $f \in B_b(\mathcal{X}), \ \mu \in \mathcal{M}(\mathcal{X}).$

The operator P^* is called the dual operator of P. Denote P^* by P.

Asymptotic strong Feller

Let $\{d_n:n\geq 1\}$ be an increasing sequence of (pseudo-)metrics on $\mathcal{X}.$ $\{d_n:n\geq 1\}$ is called a totally separating system if $\lim_{n\to\infty}d_n(x,y)=1$ for all $x\neq y$. Denote the 1-Wasserstein distance between the $\mu,\,\nu\in\mathcal{M}_1(\mathcal{X})$ induced (pseudo-)metric d by

$$\|\mu - \nu\|_{\mathbf{d}} = \inf_{\pi \in \mathcal{C}(\mu, \nu)} \int_{\mathcal{X}^2} d(\mathbf{x}, \mathbf{y}) \pi(d\mathbf{x}, d\mathbf{y}),$$

where $\mathcal{C}(\mu,\nu)$ denotes the set of positive measures on \mathcal{X}^2 with marginals μ and ν .

DEFINITION

A Markov semigroup $\{P_t\}_{t\in\mathbb{R}_+}$ is called asymptotically strong Feller at x, if exists a totally separating system of (pseudo-)metrics on $\mathcal X$ and a sequence $t_n>0$ such that

$$\lim_{\gamma \to 0} \limsup_{n \to \infty} \sup_{y \in B(x,\gamma)} \|P_{t_n}(x,\cdot) - P_{t_n}(y,\cdot)\|_{d_n} = 0.$$